Submicron silica spheres decorated with silver nanoparticles as a new effective sorbent for inorganic mercury in surface waters.

نویسندگان

  • Tanya Yordanova
  • Penka Vasileva
  • Irina Karadjova
  • Diana Nihtianova
چکیده

An analytical method using silica supported silver nanoparticles as a novel sorbent for the enrichment and determination of inorganic mercury (iHg) in surface water samples has been developed. Silver nanoparticles (AgNPs) were synthesized by a completely green procedure and were deposited onto the amine functionalized surface of silica submicrospheres (SiO2-NH2). The prepared nanocomposite material (SiO2/AgNPs) was characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray diffraction and atomic force microscopy. The sorption and desorption characteristics of the nanosorbent SiO2/AgNPs toward Hg species were investigated by a batch method. An excellent separation of iHg and methylHg was achieved in 20 minutes at pH 2. The high selectivity of the SiO2/AgNPs toward iHg was explained by Hg(ii) reduction and subsequent silver-mercury amalgam formation. The analytical procedure for the enrichment and determination of inorganic mercury in surface waters was developed based on solid phase extraction and ICP-MS measurements. The total Hg content was determined after water sample mineralization. The recoveries reached for iHg in different surface waters e.g. river and Black sea water samples varied from 96-101%. The limits of quantification are 0.002 μg L(-1) and 0.004 μg L(-1) for iHg and total Hg, respectively; the relative standard deviations varied in the ranges of 5-9% and 6-11% for iHg and total Hg, respectively, for Hg content from 0.005 to 0.2 μg L(-1). The accuracy of the procedure developed for total Hg determination was confirmed by a comparative analysis of surface river (ICP-MS) and sea (CV AFS) waters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Nanoanalysis: Amine-Functionalized Mesoporous Silica nanoparticles for Mercury Speciation in Human Samples

Mercury (Hg) causes hazardous cumulative effects in humans; like central nervous system disorders,hypertension and chromosomal aberrations. Therefore, due to high toxicity and bioaccumulationfactor, mercury determination and speciation in human blood is very important. A sensitive,accurate, precise and inexpensive method was demonstrated for preconcentration and speciationof ultra-trace mercury...

متن کامل

The effect of smart water and silica nanoparticles injection on wettability of limestone

Today, by using half of the oil reserves of the world, natural production of oil has decreased drastically. Gas and water injection for maintaining reservoir pressure is not responsive for oil production.At first, we dispersed silica nanoparticles in low salinity and after two weeks, there was no change in its stability. Then we mixed the nanoparticles in low salinity. After a while, we found o...

متن کامل

Polyelectrolyte Multilayers on Magnetic Silica as a New Sorbent for the Separation of Trace Silver in the Leaching Solutions of Antibacterial Products and Determination by Flame Atomic Absorption Spectrometry

A novel, magnetic silica sorbent with polyelectrolyte multilayers (PEMs) on its surface was prepared, and was used for Magnetic Solid Phase Extraction (MSPE) of trace A+ via Flame Atomic Absorption Spectrometry (FAAS). The experimental parameters for the MSPE procedure, such as the pH, type, and concentration of eluent, ultrasonic time and effects of co-existing ions wer...

متن کامل

The effect of smart water and silica nanoparticles injection on wettability of limestone

Today, by using half of the oil reserves of the world, natural production of oil has decreased drastically. Gas and water injection for maintaining reservoir pressure is not responsive for oil production.At first, we dispersed silica nanoparticles in low salinity and after two weeks, there was no change in its stability. Then we mixed the nanoparticles in low salinity. After a while, we found o...

متن کامل

Synthesis of CuO and Cu3N Nanoparticles in and on Hollow Silica Spheres

Copper oxide nanoparticles within hollow mesoporous silica spheres were prepared by binding/adsorbing Cu2+ or [Cu(NH3)4(H2O)2]2+ ions on the surface of carbon spheres, followed by formation of a mesoporous silica shell by sol-gel processing and calcination in air. The CuO nanoparticles can subsequently be converted into Cu3N nanoparticles by nitridation with ammonia. The effect of the different...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Analyst

دوره 139 6  شماره 

صفحات  -

تاریخ انتشار 2014